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Abstract As an important part of demand-side management, residential demand response

(DR) can not only reduce consumer’s electricity costs, but also improve the stability of power

system operation. In this regard, this paper proposes an optimal scheduling model of

household appliances for smart home energy management considering DR. The model

includes electricity cost, incentive and inconvenience of consumers under time-of-use (TOU)

electricity price. Further, this paper discusses the influence of inconvenience weighting factor

on total costs. At the same time, the influence of incentive on optimization results is also

analyzed. The simulation results show the effectiveness of the proposed model, which can

reduce 34.71% of consumer’s total costs. It also illustrates that the total costs will be raised

with the increase in inconvenience weighting factor. Thus, consumers will choose whether to

participate in DR programs according to their preferences. Moreover, the result demonstrates

that incentives are conducive to shifting load and reducing the consumer’s total energy costs.

The presented study provides new insight for the applications of residential DR.

Keywords Demand response � Energy management � Household appliances � Scheduling

1 Introduction

Demand-side management (DSM) was first proposed by the American Electric Power

Research Institute (EPRI) in 1980s, which changed the concept that the increasingly

growing electricity demand can only be met through expanding power generation
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capability. DSM implies a new concept that achieves energy saving from demand side and

regards energy use optimization as an alternative source for the supply side (Ardakani and

Ardehali 2014). As an important form of DSM, demand response (DR) refers to market

participation behavior that consumers take initiatives to change their original electricity

consumption patterns in response to market price signals or incentives. DR has changed the

previous situation that consumers do not have opportunities to participate in the operation

of the power system. And it enables consumers to become important players in regulating

market supply and demand (Heydarian-Forushani et al. 2015; Zhou and Yang 2015). DR

can reduce electricity costs of consumers by promoting them to reduce power consumption

in high-priced periods and increase the power consumption in low-priced periods. At the

same time, DR is helpful to improve the stability of power system by reducing the

occurrence probability and frequency of peak load (Moghaddam et al. 2011; Tsui and Chan

2012). Generally, the current DR programs are categorized as incentive-based and price-

based programs (Ju et al. 2016; Zhou and Yang 2016). These two categories of DR

programs are interconnected and can be designed to achieve complementary goals (Aalami

et al. 2008).

Electricity consumption of a single household is much smaller than that of commercial

and industry, so the initial research on residential DR programs is few (Liu et al. 2015;

Rassia and Pardalos 2012; Xie and Pearman 2014; Zhou et al. 2016b). But with the growth

of population and residents’ disposable income, more and more household appliances are

being used. The proportion of residential energy consumption has reached around 30–40%

of the world’s total energy consumption (Fan et al. 2015; Torriti 2014; Wu et al. 2014).

The residential loads have the characteristics of seasonal and daily peak demand, which

makes the utility companies to increase their generation capacity to meet these occasional

peak demands. It brings huge cost burdens to the operation of power system (Song et al.

2016a, b). Nowadays, the emergence and development of smart home make it possible to

schedule household load (Rassia and Pardalos 2014, 2015; Zhou et al. 2016a). Scheduling

household load can achieve power supply and demand balance by changing the load curve

shape. And it is helpful to improve energy efficiency and slow down the grid expansion

(Sanjari et al. 2015). Thus, it is of great practical significance to carry out optimal

scheduling of household appliances for smart home energy management.

Currently, researchers have identified the significance of optimal scheduling of

household appliances and consequently have presented many strategies and policies for

optimal scheduling of household appliances. Firstly, there are papers on modeling specific

appliances. For instance, Li et al. (2011) separated appliances into four types, and the

utility model and constraints of various types of appliances are considered. Shao et al.

(2013) considered physical and operational characteristics of different load types,

including space cooling/heating, water heating, clothes drying and electric vehicle (EV)

loads. And the inconvenience of household appliances, such as electric water heater

(EWH) and air conditioners, is considered in some studies (Ericson 2009; Zhang and Xia

2007). Then, some existing studies focused on the influence of electricity price on optimal

scheduling of household appliances. Mohsenian-Rad and Leon-Garcia (2010) proposed a

residential load control strategy in a real-time pricing tariff combined with inclining block

rates, and proposed strategy is combined with price prediction capabilities. Derakhshan

et al. (2016) presented an optimization model for consumption scheduling of residential

consumers under different electricity price, including TOU price, real-time price, critical

peak price and no tariff for pricing. Ji et al. (2014) proposed a residential DR controller to

control heating, ventilating and air-conditioning (HVAC) systems based on dynamic

pricing, which can curtail peak load and reduce electricity cost. In addition, some existing
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studies focused on the influence of incentive on optimal scheduling of household appli-

ances. Mallette and Venkataramanan (2010) discussed the impact of incentives on the

residential load control containing plug-in hybrid electric vehicle (PHEV). Farahani et al.

(2012) used an exponential modeling of DLC programs as incentive-based DR programs,

which is incorporated into the nonlinear behavioral characteristic of elastic loads to make

the model more realistic.

This paper proposes an optimal scheduling model of household appliances considering

DR, which comprehensively considers the electricity costs, incentive and inconvenience

under TOU electricity price. This research is different from prior work in three ways that

reflect its unique contributions. (1) The incentive for a certain period is generally fixed in

the existing research works. It is not conducive to motivating consumers to shift more load

from peak to valley time. Thus, the incentive is divided into several tiers according to the

amount of shifted load during peak times in this study. (2) It will bring inconvenience to

consumers when changing their original electricity consumption behaviors. But the

influence of inconvenience level on consumers has not been explored in depth in existing

studies. In this study, the influence of inconvenience level on the optimization results is

discussed. Consumers can control how they favor the scheduling inconvenience over the

cost by using the weighting factor. (3) Most existing studies only consider linear con-

straints in order to facilitate the calculation. In this study, nonlinear constraints are con-

sidered, such as continuous operation constraints, and it makes the scheduling model more

reasonable.

The rest of this paper is organized as follows. Section 2 proposes the optimal scheduling

model of household appliances considering DR. Then experimental setup is presented in

Sect. 3. In Sect. 4, the results are analyzed, and the influences of inconvenience weighting

factor and incentive on the results are discussed, respectively. Finally, conclusions are

drawn in Sect. 5.

2 Model

This paper proposes an optimal scheduling model of household appliances for smart home

energy management considering DR. The objective function of the proposed model is

obtained by comprehensively considering the electricity cost, incentive and inconvenience.

At the same time, the constraints of household appliances are considered in the model.

2.1 Objective function

2.1.1 The electricity cost

DR can reduce electricity cost of consumer by shifting load from peak to valley time. The

electricity cost of consumer after participating in DR program is defined as follows.

C ¼
XT

t¼1

XN

i¼1

Pi � St � kopt
i;t � Dt ð1Þ

ki;t ¼
0 when ith appliance is off at tth period

1 when ith appliance is on at tth period

�
ð2Þ
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where C is consumer’s electricity cost. T is the total number of periods in scheduling cycle.

t is the number of period. Dt is the length of each time period. N is the total number of

appliances. i is the number of appliances. Pi is the rated power of the ith appliance. St is the

electricity price in period t. k
opt
i;t is the new on/off status of ith appliance in period t, which

is determined by Eq. (2). If the operation status of ith appliance is on in period t after

optimization, then k
opt
i;t is equal to 1. If the operation status of ith appliance is off in period t

after optimization, then k
opt
i;t is equal to 0.

2.1.2 Incentive

In order to promote consumers to shift load during peak times, the incentive is considered

in the optimal scheduling model of household appliances. The incentive is divided into

several tiers according to the amount of shifted load during peak times, which is defined as

follows.

B ¼
XT

t¼1

XM

m¼1

ðam;t � pm;tÞDt ð3Þ

where B is the consumer’s incentive. am;t is the subsidized price of mth tier of incentive in

period t. pm;t is the amount of shifted load of mth tier of incentive in period t. M is the total

number of tiers of incentive.

Too few tiers of incentive are not conducive to stimulating the consumer’s potential of

shifting load from peak to valley time. But too many tiers of incentive will make it difficult

for consumers to determine the amount of shifted load during peak times. Thus, the

incentive is divided into three tiers in this paper (M ¼ 3). Then Eq. (3) can be converted to

B ¼
XT

t¼1

ða1;t � p1;t þ a2;t � p2;t þ a3;t � p3;tÞDt ð4Þ

where p1;t, p2;t and p3;t are the shifted load corresponding three-tier incentive in period t

respectively, and their sum is equal to Qt. a1;t, a2;t and a3;t are the subsidized price

corresponding three-tier incentive in period t, respectively. For example, incentive is

divided into three tiers by p1 and p2, i.e., ½0; p1�, ½p1; p2� and ½p2; þ1�. If Qt is bigger than

p1 and smaller than p2, then p1;t, p2;t, p3;t are equal to p1, Qt � p1, 0, respectively. So the

incentive in period t is equal to a1;t � p1 þ a2;t � Qt � p1ð Þ.

2.1.3 Inconvenience

The behavior of consumers to change the original electricity consumption patterns will

bring inconvenience. The level of the inconvenience will affect consumers whether to

participate in the DR programs. Thus, the inconvenience must be considered in the pro-

posed model. We assume that the consumers’ electricity consumption behavior is fixed,

and advance or delay in the electricity consumption behavior will bring inconvenience to

the consumers. In real life, inconvenience is related to the length of advance or delay time.

Therefore, this article defines inconvenience as follows.

1642 Nat Hazards (2017) 88:1639–1653

123



www.manaraa.com

I ¼
XN

i

XT

t¼1

t k
opt
i;t � kbl

i;t

� ������

����� ð5Þ

where I is the inconvenience. kbl
i;t is the consumer’s baseline on/off status of ith appliance in

period t, which is determined by Eq. (2).
PT

t¼1 t k
opt
i;t � kbl

i;t

� �
is the delay or advance time of

ith appliance (positive value indicates delay, and negative value indicates advance). For

example, we take one hour as a sampling time and a study period of 24 h. The running time

intervals of dishwasher before and after optimization are 20:00–21:00 and 23:00–24:00,

respectively. The running time of dishwasher is delayed for 3 h, and then inconvenience is

equal to 3.

2.1.4 Objective function

The goal of each household to participate in load scheduling is to minimize its total cost

subject to various consumption constraints. After comprehensively considering the elec-

tricity cost, incentive and inconvenience, the objective function of residential DR is defined

as follows.

Ctotal ¼ C � Bþ aI ð6Þ

where Ctotal is the total costs. a is the weighting factor, which reflects preference of

consumers to participate in DR programs. The large weighting factor means shifting load

will bring great inconvenience to consumers so that consumers are reluctant to participate

in DR programs.

2.2 Constraints

2.2.1 Energy consumption constraints

The energy consumption after optimization should not be less than the energy consumption

before optimization in order to satisfy consumer’s normal life. This constraint is denoted as

follows.

Xendi

starti

k
opt
i;t �Ni ð7Þ

where starti and endi are the start and end of the schedulable time interval of ith appliance.

It means that appliances must be run at a certain time interval (Baboli et al. 2012; Rastegar

et al. 2012). Ni is the time duration required to finish normal operation of ith appliance,

which is represented by the total number of running time periods.

2.2.2 Continuous operation constraints

Some electrical appliances cannot be interrupted when running. Thus, continuous operation

constraints of electrical appliances should be considered in the model except water pump

of swimming pool, EWH and EV. This constraint is expressed as follows.
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Xendi� Ni�1ð Þ

starti

k
opt
i;t � kopt

i;tþ1 � k
opt
i;tþ2 � � � k

opt

i;tþ Ni�1ð Þ � 1 ð8Þ

2.2.3 Running order constraints

In real life, some appliances must be run after the other. For example, the clothes dryer

must be run after the washing machine. It is necessary to restrict running order of appli-

ances. This constraint is denoted as follows.

startu � startv þ Nv ð9Þ

where start u and startv are starting time of uth and vth appliance, respectively, 1� u; v�N.

Nv is the time duration required to finish normal operation of vth appliance. It means that

the starting time of uth appliance must be after the starting time of vth appliance plus its

run time.

2.2.4 The constraint of incentive

XT

t¼1

XM

m¼1

ðam;t � pm;tÞDt�UB ð10Þ

where UB is the utility’s total budget. Equation (10) ensures that the total incentive paid by

the utility is less than or equal to the utility’s budget.

2.2.5 Capacity constraints of EV battery

EV is considered in the model. The state of charge (SOC) of the battery refers to the ratio

of the residual energy to the rated energy. In order to protect the battery of the EV, battery

cannot be overcharged. This constraint is expressed as follows.

SOCEV � SOCmax
EV ð11Þ

where SOCEV is the SOC of battery of EV and SOCmax
EV is the upper limit of SOC of EV.

3 Experimental setup

The household loads can be classified into two types. The first type is the shiftable load,

which can be scheduled at different time periods. The shiftable load can be divided into

interruptible load and non-interruptible load. For example, the EWH is the shiftable and

interruptible load, but the washing machine is the shiftable and non-interruptible load. The

second type is the non-shiftable load that must be operated during specific time periods,

such as lighting and television. Therefore, only the shiftable load can be involved in the DR

programs. In this paper, the eight appliances are selected in the optimal scheduling model

in a smart home. The data of appliances are listed in Table 1, including power rating, time

duration required to finish normal operation, starting and ending time of the schedulable

time interval. The TOU electricity price is shown in Fig. 1. Peak times are 08:00–13:00

and 17:00–22:00. Valley times are 00:00–06:00. Other times of the day are flat times.
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Three-tier incentive data are listed in Table 2. It is shown in Table 2 that there are no

incentive data during valley times. The reason is that reducing valley load is meaningless

for power system.

4 Results and discussion

4.1 Result analysis

The problem is formulated as mixed integer nonlinear programming (MINLP). It is solved

by linear interactive and general optimizer (LINGO) software. LINGO is a comprehensive

tool designed to make building and solving mathematical optimization models easier and

more efficient, which has a good ability to solve the linear and nonlinear optimization

problems. This paper sets the calculation cycle as one day, by setting 1 h as a calculation

period, and then the whole day could be divided into 24 periods. The weighting factor of

inconvenience is set to 0.2. The selection of inconvenience weighting factor will affect the

optimization results. Thus, the influence of inconvenience weighting factor on optimization

results will be discussed later in this paper. Household load before optimization is shown in

Fig. 2. Household load after optimization at a ¼ 0:2 is shown in Fig. 3.

It is shown in Fig. 2 that household load mainly concentrated at 19–24 h before opti-

mization. The electricity price is high at that time. After optimization, it is shown in Fig. 3

that load in high-priced time periods has been shifted to low-priced time periods for DR,

i.e., at 3–6 h in the evening. Thus, DR plays a role of peak shaving and valley filling for the

main power grid.

The running time intervals of household load before and after optimization at a ¼ 0:2
are listed in Table 3. It is shown in Table 3 that the running time interval of washing

machine before and after optimization is 20–21 h and 21–22 h, respectively. For the

second appliance, the running time intervals of tumble dryer before and after optimization

are 21–23 h and 22–24 h, respectively. The tumble dryer was operated after washing

machine, which satisfies the running order constraints. In addition, it can be seen that the

running times of washing machine and tumble dryer are consecutive. The reason is that

they must satisfy the continuous operation constraints. As for water pump, EWH and EV,

they do not need to satisfy the continuous operation constraints because they are contin-

uous on/off appliance.

Table 1 Data of appliances

Appliance Power rating/W Duration Ni (min) starti and endi

Washing machine 500 60 20:00–7:00

Tumble dryer 750 120 21:00–7:00

Dishwasher 800 60 13:00–17:00

60 19:00–24:00

Water pump 1800 180 00:00–9:00

Microwave 1200 60 18:00–20:00

EWH 2000 120 3:00–8:00

120 15:00–21:00

EV1 6000 300 19:00–7:00

EV2 7000 300 18:00–7:00
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The switching status of high-cost appliances before and after optimization at a ¼ 0:2 is

shown in Fig. 4. The reason of high cost is their long running time and high-rated power.

For example, running time of both EV1 and EV2 is 5 h, which is longer than other

appliances. Meanwhile, the rated power of EV1 and EV2 is 6 and 7 kW, respectively,

which is greater than the general electrical appliances. In order to reduce costs, more high-

cost appliances should be incorporated into the DR programs.

The simulation results show that the total costs before optimization are ¥78.0455. And

the total costs after optimization with a ¼ 0:2 are ¥50.955. The total costs are reduced by

34.71% through the DR. The results show the correctness and effectiveness of the proposed

model. In fact, the amount of saving will be influenced by the inconvenience weighting

factor and the incentive. Thus, the influence of inconvenience and incentive on opti-

mization results will be discussed later.
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Fig. 2 Household load before
optimization

Table 2 Three-tier incentive
data

Type First tier Second tier Third tier

p1 Price p2 Price Price
kWh ¥/kWh kWh ¥/kWh ¥/kWh

Peak 3 0.2 6 0.35 0.4

Flat 5 0.1 10 0.15 0.2

Valley – – – – –

0 5 10 15 20 25
0

0.4

0.8

1.2

1.6

Time(h)

P
ric

e 
(¥

)

Fig. 1 TOU electricity price
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4.2 The influence of inconvenience weighting factor

The inconvenience level of consumer is depended on the weighting factor a. The influence

of inconvenience level on consumers’ electricity consumption behavior is not discussed in

depth in the current study. Therefore, it is necessary to discuss the influence of weighting

factor on the results. Household load after optimization at different weighting factor is

shown in Fig. 5. Total costs and inconvenience at different weighting factors are listed in

Table 4.

According to Figs. 1 and 5, it is shown that the shifted load from peak times (19–22 h)

to valley times (1–6 h) becomes less with the increase in weighting factor a. The reason is

that the weighting factor reflects consumer’s preference. The smaller weighting factor

means lower penalty on inconvenience, so that consumers are willing to shift more load in

order to reduce the total costs.

It is shown in Table 4 that the inconvenience decreases with the increase in weighting

factor. But the total costs increases with the increase in weighting factor. The reason is that
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2
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P
ow

er
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Fig. 3 Household load after
optimization

Table 3 Running time intervals of household load before and after optimization

Appliance Running time interval
before optimization

Running time interval
after optimization

Washing machine 20:00–21:00 21:00–22:00

Tumble dryer 21:00–23:00 22:00–24:00

Dishwasher 13:00–14:00 13:00–14:00

19:00–20:00 19:00–20:00

Water pump 6:00–9:00 04:00–06:00
07:00–08:00

Microwave 18:00–19:00 18:00–19:00

EWH 6:00–8:00 04:00–06:00

19:00–21:00 19:00–21:00

EV1 19:00–24:00 03:00–06:00
22:00–24:00

EV2 18:00–23:00 03:00–06:00
22:00–24:00
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the high weighting factor means a high penalty on inconvenience. To reduce the penalty on

inconvenience, consumers are not willing to shift peak load when their weighting factor is

high. The decrease in shifted load leads to the increase in total costs. Thus, weighting

factor is a trade-off between the total costs and the inconvenience.

According to Table 4, the total costs and inconvenience remain constant when the a is

larger than or equal to 1. The reason is that the penalty on inconvenience is very high when

a is larger than or equal to 1. Consumers are not willing to shift peak load. Thus, the total

costs and inconvenience remain constant.

4.3 The influence of the incentive

In this paper, we discuss the results of residential DR considering the incentive and

inconvenience. The incentive is divided into several tiers according to the amount of

shifted load during peak times in this paper, which is different from previous studies and

conducive to motivating consumers to shift load from peak to valley time. Whether
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Fig. 4 Switching status of high-
cost appliances before and after
optimization
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consumers participate in the DR programs will be affected by the incentive. Thus, it is

necessary to discuss the influence of incentive on the results. Total costs and inconvenience

at different weighting factors without incentive are listed in Table 5. Cost comparisons

between incentive and no incentive are shown in Fig. 6. Inconvenience comparisons

between incentive and no incentive are shown in Fig. 7.

It is shown in Table 5 that the inconvenience decreases with the increase in weighting

factor. And the total costs increases with the increase in weighting factor. The reason is

same as optimal scheduling model of household appliances considering the incentive. It is

shown in Fig. 6 that the total costs with incentive are smaller than those without incentive

at different inconvenience weighting factor. It means incentives are conducive to reducing

0 5 10 15 20 25
0

0.5

1

1.5

2
x 10

4

Time(h)

P
ow

er
(k

W
)

=0

0 5 10 15 20 25
0

0.5

1

1.5

2
x 10

4

Time(h)

P
ow

er
(k

W
)

=0.1

0 5 10 15 20 25
0

0.5

1

1.5

2
x 10

4

Time(h)

P
ow

er
(k

W
)

=0.2

0 5 10 15 20 25
0

0.5

1

1.5

2
x 10

4

Time(h)

P
ow

er
(k

W
)

=0.4

Fig. 5 Household load after optimization at different weighting factor

Table 4 Total costs and incon-
venience at different weighting
factors

a Total costs (¥) Inconvenience (I)

0 17.16 264

0.1 36.845 160

0.2 50.955 103

0.4 70.7155 48

1 78.0455 0

5 78.0455 0

10 78.0455 0
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the consumer’s total costs. Meanwhile, Fig. 6 shows that the gap between total costs with

incentive and without incentive will be smaller with the increase in weighting factor. The

reason is that shifting load will bring great penalty on inconvenience to consumers when

inconvenience weighting factor is large enough. Consumers are not willing to shift load.

The total costs with incentive or without incentive will be the same as before the imple-

mentation of DR.

Table 5 Total costs and incon-
venience at different weighting
factors without incentive

a Total costs (¥) Inconvenience (I)

0 37.96 264

0.1 56.367 114

0.2 67.515 100

0.4 77.8575 2

1 78.0455 0

5 78.0455 0

10 78.0455 0
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Fig. 6 Cost comparisons between incentive and no incentive
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Fig. 7 Inconvenience comparisons between incentive and no incentive
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It is shown in Fig. 7 that the inconvenience of consumer considering incentive is larger

than that without considering incentive when a is larger than 0. It demonstrates that

incentives are conducive to shifting load. For example, Fig. 8 shows the household load

comparisons between incentive and no incentive at a ¼ 0:4. According to Fig. 8, more

loads are shifted from high-priced periods (19–22 h) to low-priced periods (1–6 h) when

considering incentive. It illustrates that consumers are more willing to shift peak load in

order to reduce the total costs under the incentive.

5 Conclusions

This paper proposes an optimal scheduling model of household appliances for smart home

energy management considering DR. The electricity cost, incentive and inconvenience of

consumers under TOU electricity price are considered in the model. The results show that

the consumer will shift load from peak times to valley times in response to the electricity

prices and incentive. Consumer will reduce 34.71% of the total costs when inconvenience

weighting factor a ¼ 0:2. The influence of inconvenience weighting factor on optimization

results is considered in this paper. It illustrates that the weighting factor is a trade-off

between the total costs and the inconvenience. Consumers will choose whether to par-

ticipate in DR according to their preferences. Meanwhile, the influence of incentive on

optimization results is also considered in this paper. The results demonstrate that the

incentives are conducive to shifting load and reducing the consumer’s total costs.

In this paper, we discuss the DR application of one household in one day. Future work

will consider more households and longer study period. Meanwhile, with the increase in

the number of households, the inconvenience level of households may be different. It will

bring difficulties to energy management of smart home. Thus, optimal scheduling problem

of multi-household needs to be further studied. In addition, this article considers electrical

appliances of fixed operating power. But some household appliances are regulating

appliances, whose consumption level can be determined through the energy management
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procedure, such as air conditioner. This type of appliances will be considered in the further

research.
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